Computational Tools for Cohomology of Toric Varieties
نویسندگان
چکیده
In this review, novel non-standard techniques for the computation of cohomology classes on toric varieties are summarized. After an introduction of the basic definitions and properties of toric geometry, we discuss a specific computational algorithm for the determination of the dimension of line-bundle valued cohomology groups on toric varieties. Applications to the computation of chiral massless matter spectra in string compactifications are discussed and, using the software package cohomCalg, its utility is highlighted on a new target space dual pair of (0, 2) heterotic string models.
منابع مشابه
Weights in the cohomology of toric varieties
We describe the weight filtration in the cohomology of toric varieties. We present the role of the Frobenius automorphism in an elementary way. We prove that equivariant intersection homology of an arbitrary toric variety is pure. We also obtain a results concerning Koszul duality: nonequivariant intersection cohomology is equal to the cohomology of the Koszul complex IH∗ T (X)⊗ H ∗(T ).
متن کاملRational versus Real Cohomology Algebras of Low-dimensional Toric Varieties
We show that the real cohomology algebra of a compact toric variety of complex dimension 2 is completely determined by the combinatorial data of its deening fan. Surprisingly enough, this is no longer the case when taking rational coeecients. Moreover, we show that neither the rational nor the real or complex cohomology algebras of compact quasi-smooth toric varieties are combinatorial invarian...
متن کاملThe Cohomology Groups of Real Toric Varieties Associated to Weyl Chambers of Type C and D
Given a root system, the Weyl chambers in the co-weight lattice give rise to a real toric variety, called the real toric variety associated to the Weyl chambers. We compute the integral cohomology groups of real toric varieties associated to the Weyl chambers of type Cn and Dn, completing the computation for all classical types.
متن کاملOrbifold Cohomology of Torus Quotients
We introduce the inertial cohomology ring NH T (Y) of a stably almost complex manifold carrying an action of a torus T . We show that in the case that Y has a locally free action by T , the inertial cohomology ring is isomorphic to the Chen-Ruan orbifold cohomology ring H∗CR(Y/T ) (as defined in [Chen-Ruan]) of the quotient orbifold Y/T . For Y a compact Hamiltonian T -space, we extend to orbif...
متن کامل2 00 8 Piecewise Polynomials , Minkowski Weights , and Localization on Toric Varieties
We use localization to describe the restriction map from equi-variant Chow cohomology to ordinary Chow cohomology for complete toric varieties in terms of piecewise polynomial functions and Minkowski weights. We compute examples showing that this map is not surjective in general, and that its kernel is not always generated in degree one. We prove a localization formula for mixed volumes of latt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1104.1187 شماره
صفحات -
تاریخ انتشار 2011